Abstract
Recent studies demonstrate the efficacy of machine learning algorithms for learning strategies to solve combinatorial optimization problems. This study presents a novel solution to address the Electric Vehicle Routing Problem with Time Windows (EVRPTW), leveraging deep reinforcement learning (DRL) techniques. Existing DRL approaches frequently encounter challenges when addressing the EVRPTW problem: RNN-based decoders struggle with capturing long-term dependencies, while DDQN models exhibit limited generalization across various problem sizes. To overcome these limitations, we introduce a transformer-based model with a heterogeneous attention mechanism. Transformers excel at capturing long-term dependencies and demonstrate superior generalization across diverse problem instances. We validate the efficacy of our proposed approach through comparative analysis against two state-of-the-art solutions for EVRPTW. The results demonstrated the efficacy of the proposed model in minimizing the distance traveled and robust generalization across varying problem sizes.
Links
BibTeX (Download)
@conference{Munir2024c, title = {Route Planning for Electric Vehicles with Charging Constraints}, author = {Aiman Munir, Ramviyas Parasuraman, Jin Ye, WenZhan Song}, url = {https://ieeexplore.ieee.org/abstract/document/10757558}, doi = {10.1109/VTC2024-Fall63153.2024.10757558}, year = {2024}, date = {2024-10-10}, booktitle = {2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall)}, pages = {2577-2465}, abstract = {Recent studies demonstrate the efficacy of machine learning algorithms for learning strategies to solve combinatorial optimization problems. This study presents a novel solution to address the Electric Vehicle Routing Problem with Time Windows (EVRPTW), leveraging deep reinforcement learning (DRL) techniques. Existing DRL approaches frequently encounter challenges when addressing the EVRPTW problem: RNN-based decoders struggle with capturing long-term dependencies, while DDQN models exhibit limited generalization across various problem sizes. To overcome these limitations, we introduce a transformer-based model with a heterogeneous attention mechanism. Transformers excel at capturing long-term dependencies and demonstrate superior generalization across diverse problem instances. We validate the efficacy of our proposed approach through comparative analysis against two state-of-the-art solutions for EVRPTW. The results demonstrated the efficacy of the proposed model in minimizing the distance traveled and robust generalization across varying problem sizes. }, keywords = {control, learning, multi-robot systems}, pubstate = {published}, tppubtype = {conference} }